PREHISTORIC LIFE
ALONG THE ANACOSTIA RIVER:
ARCHAEOLOGY AT THE
BARNEY CIRCLE SITES

Long before Metropolitan Washington spread across the banks of the Potomac and Anacostia rivers, before there was a Capital Beltway or an Anacostia Freeway, before English settlers arrived in the early 1600s and tobacco farms dotted the region, the banks of the Anacostia River were home to people who fished, hunted and in some cases tilled plots of ground on the lands bordering the stream. For thousands of years, people have lived along the river. They called it by names now long forgotten, but all were drawn to the stream as a source of life and sustenance.

The river changed over the centuries. Thousands of years ago it was a deep, narrow and fast-flowing stream. In time it became slower and wider, with marshy edges where small brooks and creeks flowed in. During much of this time, people came to the marshes to gather wild rice, marsh grasses, and tubers. They collected shellfish from the clear waters and hunted waterfowl. Seasonal runs of spawning fish such as shad, alewife and the massive sturgeon provided bountiful harvests.

Life moved at a different pace, unlike the fast and busy rate of modern times. Settlements were small, sometimes containing no more than a few family groups. As the seasons changed, the families would move on to other places where different plants and animals were found. Often they would return season after season to the same location on the river bank, to a favored spot known for particular abundance. They may also have returned for
more spiritual reasons, to places where someone had died, or where certain rituals were traditionally carried out.

Transportation Corridors

Plans for a modern freeway extension across the river in the 1980s—the Barney Circle Freeway Modification Project—led to an opportunity to examine archaeological remains along the river. This work has helped tell the story of how people lived in the region before the arrival of Europeans who altered the landscape and ultimately constructed the modern city.

The project was the latest episode in the long history of the valley of the Anacostia River as an important transportation corridor. Although the river was primarily important for the water and other natural resources it contained, it was also a natural avenue. During the long pre-Colonial span of time, the river was a crucial passageway for people who lived on its bordering terraces. It was a path to the north toward the hilly piedmont regions of what are now parts of Montgomery County, Howard County and areas northward into Pennsylvania, or south onto the level coastal plain of Prince George’s County, Charles County, and St. Mary’s County.

The river was a way of getting from place to place. Transportation corridors, both ancient and modern, tend to follow stream valleys, taking advantage of the natural topography for an efficient route through the landscape. Maneuvering in log canoes or other small craft would have been easy on the wide and slow moving stream. The river banks also provided
relatively even, uniform ground for traveling by foot.

Rivers such as the Anacostia were often prime routes for trade during prehistory as well as in the Colonial period and beyond. At least one derivation of the name Anacostia is held to be the Algonquian word “anaquash-tan,” meaning town of traders. The importance of the river as an early trade corridor is seen in an observation made by Henry Fleet, an English trader in the early 17th-century. He wrote that the main village on the Anacostia River at that time, called Nacocthank, controlled a flourishing upriver beaver trade.

The river was the chief means of transportation for early European colonists. Maps from the 17th century show settlements clustered along the shorelines of rivers and major streams, with few if any settlements inland connected by roads. By the middle of the 18th century, the town of Bladensburg was established at the limit of navigation on the river. The town became a leading port for the export of tobacco. But the river channel soon began filling with silt, as tobacco and later cotton and corn were widely grown as cash crops. Run-off from the plowed fields poured large volumes of soil into the stream. By the early part of the 19th century Bladensburg was no longer a major port, and the direct importance of the Anacostia River for agricultural trade decreased dramatically.

Soon, however, roads and railroads supplanted the river as primary transportation routes. The east bank of the Anacostia was rural until the late 19th century. Roads connected farms in the region, while the Eastern Branch Road,
which later became Anacostia Road and is now Minnesota Avenue, generally followed the river along a high terrace. The road led northward to Bladensburg, although the importance of the town was by then greatly diminished.

In the latter part of the 19th century, rail lines paralleled the river, and the Anacostia Valley shifted from a water corridor to an iron rail corridor. By the late 1870s, the Alexandria Branch of the Baltimore and Ohio Railroad ran along the east bank of the river connecting the major ports of Alexandria and Baltimore.

Bridges crossed the river as early as 1804, linking new residential neighborhoods on the east bank with the growing city of Washington to the west. Rising urbanization resulted in streets in Washington arranged in a formal design of grids and radials, serving neighborhoods with local traffic corridors according the plan developed by the French-born engineer, Pierre L’Enfant.

Highway networks have interconnected the city and surrounding region in the 20th century. The east bank of the river continued as an important transportation corridor with the construction of the Anacostia Freeway in 1961, paralleling the river and the old Eastern Branch/Anacostia Road. By the mid-20th century, air travel also became an increasingly important means of transportation, with a major air hub, Washington National Airport, built just below the mouth of the Anacostia River on the Potomac.
The Barney Circle Freeway Project

The Barney Circle archaeological investigations were carried out as part of an environmental impact review that is required of all federally funded development projects. The laws behind this review are designed to examine the effects of proposed land development on existing natural and cultural resources. Analysts determine how the planned work will affect water and air quality, for example or whether there are important historical buildings or prehistoric archaeological sites that might be disturbed or destroyed by construction.

The construction project was originally proposed in the early 1980s. Parts of the corridor along the river that were known to be archaeologically sensitive were surveyed by archaeologists in 1984. They found a number of sites during the survey and conducted formal evaluations of them in 1989. Based on these assessments, four of the sites appeared to contain new, previously undiscovered information about prehistoric life in the District of Columbia. The proposed road construction would have effectively destroyed the sites, and the corridor could not be re-aligned to avoid them. And so, the archaeologists returned to the sites in 1994 to excavate them systematically and recover the information they contained.

The archaeological sites represented a number of small settlements of varying ages. There was evidence that people first lived in these locations as much as 8,000 years ago. Most of the artifacts and other data from the sites, however, indicated that people lived in these areas regularly from about 1,000 to 3,000 years
ago, during periods that archaeologists refer to as Late Archaic, Early Woodland and Middle Woodland.

The Archaeological Sites

As is customary, the DC Historic Preservation Office gave the sites formal numbers using a three-part system developed by the Smithsonian Institution. The first part represents the number of the state in an alphabetical list. The District of Columbia is not a state, so the number 51 is assigned to it. The second part is an abbreviation of the county in which the site occurs. Again, the District is different in that it does not have counties. Instead, the four quadrants of the city used in street addresses are used—NE, NW, SE, and SW. The third part of the site designation is the number of the site in the order in which it was recorded. Thus, for the Barney Circle site 51SE25, the first number, 51, denotes the District of Columbia; SE denotes the southeast quadrant of the city; and 25 denotes the 25th site recorded in that part of the city.

Site 51SE25 originally sat on a high terrace on the east side of the Anacostia River. The site lay some 400 feet from the river on a bluff that stood 30 feet higher than the stream bank. The river may not have been the main source of water for people living at the site, though. Maps from the late 1800s, a period during which the area was covered with agricultural fields and orchards, show a small stream flowing from the east toward the river just north of the site. The stream was probably spring fed, and thus it may have flowed to
some extent year-round. It cut sharply into the terrace as it flowed down to the river and may have exposed old layers of gravel, pebbles and cobbles that could have been used for tool making, or clay useful for making pots.

Through careful mapping of the archaeological deposits, we could see distinct evidence of the valley of the small stream. A gentle slope led northward to a drop-off where the tributary cut into the terrace on its way down to the river.

About 3,000 years ago, during a period known as the Early Woodland, a group of people settled in this spot for a short time. In one part of the site, we found a large amount of flaking debris left from making stone tools from quartzite cobbles. From the shapes and sizes of the unfinished artifacts, we determined that the flintknappers, as the artisans are called, were making slender, narrow-bladed artifacts that we refer to as Holmes points.

Nearby was an area containing debris from cooking fires. While there was little charcoal left, clusters of stone that had been heated indicated the remains of fires. Among the stones were broken pottery sherds and several long, slender bladed stone tools—Holmes points.

We determined that the two parts of the site were connected because of a group of potsherds found in each location. All of the sherds were from a type of pottery referred to as Accokeek, a low-fired ceramic with a sandy body and the marks of corded twine on the outside. The cord had been wrapped around a wide stick or paddle and pressed against the
pot. The purpose of the cord markings is debated. The pots were constructed by building up coils of clay that were then pressed into a smooth body. The corded sticks may have been used to more completely press or combine the coils. Alternatively, they may have been used to roughen the exterior of the pot, making it easier to grasp. The markings may also have had a less functional use by adding decoration to the exterior of the pot.

Whatever its purpose may have been, cord marking is a distinctive characteristic of the exteriors of Accokeek potsherds. A few of the broken shreds from each of the two areas of the site could be put back together, or mended. After we closely examined the other sherds, we found that the general color of the sherds, the amount and size of sand particles used to temper the clay, as well as the characteristics of the cord marking suggested that they were all from the same broken pot.

Judging from the number of artifacts found at the site, it appears that the people who settled here did not stay long. They collected stone from the stream valley north of the site, replenished their supply of stone points, hunted along the stream banks and collected other foodstuffs there, and soon moved on.

51SE26

This site appeared to be similar in many ways to 51SE25. It was located on the same terrace, on the opposite side of the tributary stream on which 52SE25 occurred. Careful mapping again allowed us to identify the slope leading down to the stream.
The archaeological excavations revealed evidence of small settlements at one end of the site that were around 3,000 years old, occurring in the Early Woodland. At the other end of the site, closer to the stream, settlements were not as old, occurring perhaps 1,500 years ago during a period known as the Middle Woodland.

In one spot we found more than 100 potsherds in an area that measured about 25 by 25 feet. While only a few of the sherds fit together, they all had paste, color and surface characteristics suggesting that they were from a single pot that had broken at this location.

A number of signs suggested that the pot shattered while it was being made. The interior surface of many of the sherds showed places where pieces had broken away in sheets, in a process referred to as heat spalling. Other evidence indicated that the sand used to temper the clay was not evenly mixed, being concentrated in some sherds and barely present in others. Many of the sherds had broken along coil lines, suggesting that the coils had not been very well integrated or pressed together. Together this evidence suggested that the pot broke while it was being fired. Because of the coil breaks and unevenly distributed temper, we speculated that the pot had been produced too quickly or by someone who was just learning the process.

We do not often see evidence of pottery manufacture on archaeological sites in this region. Most of the artifacts we find are the debris left behind from making stone tools. Many different tools were made of stone, and
some of them could be made quickly or as needed on the spur of the moment. Making pottery required more preparation and perhaps more specialized knowledge—the potter needed to know what kind of clay to use and where to find it, how to find and prepare temper, how to properly create coils and mold them into a smooth pot. A very large number of stone chips may be left behind when a stone tool is manufactured and the fragments usually do not deteriorate. In comparison, relatively little waste material is left behind when a pot is made, and the material breaks down more quickly than stone. And so, we say that stone tool making is more visible archaeologically than pottery manufacture, since we find evidence of it more often.

Finding this pot at Barney Circle site 51SE26 was remarkable, even though there was no other evidence of its production. We did not find the remains of the fire in which the pot was heated nor any other direct evidence of manufacturing. Still, it seems clear that the vessel was made in this location or very nearby. It is likely that clay was found in an exposure in the stream valley south of the site and that it was brought up to the terrace to be fashioned into the pot. The broken and spalled sherds give us a glimpse of an event such as is rarely seen in archaeological sites in this region.

51SE31

Site 51SE31 provided a lesson in stratigraphic interpretation and why archaeologists closely examine soil layers and what the layers contain. As we excavated this site, we found fragments of bottle glass and ceramic wares from the 19th-century, along with prehistoric artifacts including some spear points with
styles that could be dated to the Late Archaic period. It is not unusual to find historical and prehistoric sites mixed together. In an area such as this where soil does not accumulate rapidly, the ground surface on which people lived during the prehistoric period may remain part of the open ground surface during the historical period, and thus the artifacts can become intermixed. This was our initial interpretation of the stratigraphic layers at 51SE31.

As excavation continued and we dug deeper, we found fewer historical artifacts and more prehistoric artifacts, which is what would be expected. That is, the lower layers at the site would have been deposited earlier, during the prehistoric period and so they should contain mostly prehistoric artifacts. However, the prehistoric artifacts in the lower strata were later in date than the prehistoric artifacts found mixed with historical artifacts above. Our understanding of stratigraphy tells us that artifacts in lower strata should be older than those above. The situation here seemed to challenge that idea.

A convincing explanation was not easy to come by until we considered the wider context of the site. It’s all about location. The site was situated at the base of a long slope, and buildings sat up the hillside in the 19th century. We examined maps and records in the DC Historic Preservation Office and found that prehistoric archaeological sites have also been recorded on the slope above the site. 51SE31 was located in what was once considered an undesirable area, a marshy low spot at the edge of the Anacostia River. The soil layer containing historical and Late Archaic
prehistoric artifacts thus appeared to be fill dirt related to demolition of the buildings on the upper slopes in the early part of the 20th century. Soil containing a mixture of artifacts had been graded from the demolition sites and placed along the marshy river shore to raise the ground surface above the tidal marshes. Later, more fill was placed on top of that which compressed the layers and made them difficult to distinguish from the undisturbed sequence below.

After identifying the fill layers, we examined the layers below it and determined that several groups of people lived here along the terrace next to the river, possibly along a small, spring-fed stream running down to the river’s edge. The artifacts at the site indicated that people came to this spot for short visits over the course of several thousand years. Most of the artifacts however were from two general time periods—the first about 3,000 years ago, in the Early Woodland, and the second about 1,500 years ago in the Middle Woodland. The groups that lived at the site were small, based on the number of artifacts they left behind. Pottery sherds and clusters of heated rock from the site suggested that they built fires to cook food such as wild rice, tubers or fish harvested along the streamside.

\textbf{51SE32}

This site was located a few hundred feet south of 51SE31, on a similar terrace and along a tributary stream that flowed into the Anacostia River from the slopes above. The stream was still present in the mid-1800s, when maps of the area show it lined with trees and other vegetation.
As at 51SE31, small groups of people lived by the tributary off and on over the course of several thousand years. Based on the types of artifacts found at the site, the main occupations occurred sometime about 1,500 years ago, in the Middle Woodland period. The stream probably fed into a marshy area along the river that was flooded at high tide and was a mudflat at low tide. Marsh grasses, tubers and wild rice would have grown nearby, fish would have frequented the quiet water near the shore, and shellfish may have been harvested close by.

Archaeology with a Backhoe

Some of the tools used in the work at the Barney Circle archaeological sites may seem a little unusual, not what you might typically associate with archaeology—backhoes and front-end loaders rather than trowels and brushes. We chose this equipment because we knew in advance that the original, prehistoric ground surfaces were buried beneath fill-dirt and debris that was as much as 16 feet deep. The fill had been placed over the sites, in some cases relatively recently, to either fill in the low, wet ground by the river or to raise and level ground surfaces for railroad construction.

We learned about this fill-dirt by studying historical records and maps of the city. For many years, the U.S. Army Corps of Engineers has been active in dredging rivers and reclaiming wetlands throughout the country, and they often leave detailed records of their work. The Corps conducted a major dredging project in the Anacostia River in the early years of the 20th century. Their records indicate that the debris from the work, referred to as
dredging spoil, was used in part to create Kingman Island, north of the Whitney Young/Benning Road Bridge, as well as to reclaim land along the Anacostia River shoreline.

Historical maps from the mid-1800s helped us determine where some of this shoreline filling had taken place. Using these documents, we compared the early shorelines and ground surface elevations with modern maps of the city. We made the comparisons as accurately as possible by using modern digital mapping techniques known as GIS, or Geographic Information Systems. GIS uses powerful computer programs to overlay maps of different sizes and scales. In a process referred to as geo-referencing, we supply the program with basic information about landmarks or points on each map, such as road intersections or bridge locations. The program then uses complex statistical calculations to assign map coordinates to all of the features. Each map can then be directly related to other maps that have been similarly geo-referenced. From this research we had good estimates about the depths of fill in the planned highway corridor, and therefore we knew where we would need to use heavy equipment for the initial work.

How the Anacostia River Valley Was Formed

The Anacostia River flows out of Prince Georges County and Montgomery County in Maryland, beginning as a number of small streams and entering the District of Columbia just below Bladensburg. It continues beneath several modern road and railway bridges, past the Navy Yard and Joint Base Anacostia-Bolling
(Bolling AFB), to meet the Potomac River at Giesboro Point at the north end of the Naval Research Lab. The land from which water flows into the river is referred to as its basin or watershed. The Anacostia watershed measures 176 square miles, covering Washington D.C., and parts of Prince Georges County and Montgomery County. In comparison, the much larger Potomac River, of which the Anacostia is a tributary, has a watershed measuring more than 11,500 square miles.

What is today an urbanized metropolitan landscape looked considerably different in the past, even several hundred years ago. The earliest European settlers cleared the land and planted the first cash crop of the region—tobacco. Prior to that, the Anacostia River valley was mostly wooded, covered with a forest of oaks, hickories, elms and other hardwood trees. Tidal marshes bordered the lower reaches of the river.

The river cuts through ancient marine sediments that were laid down millions of years ago, when the entire east coast of North America was covered by a vast ocean. During the last Ice Age, much of that water was trapped in sheets of ice several miles thick that covered a large part of the northern and southern hemispheres. Sea levels were 400 feet below their present levels, exposing much of the area that was originally submerged. As worldwide temperatures began to rise about 16,000 years ago and the ice sheets slowly thawed, melting water made rivers such as the Anacostia much larger and faster running streams than they are today. The Anacostia cut deeply into the marine sediments and left behind long, wide shelves or terraces in the old
sands and clays that were once the bottom of the ocean.

By about 12,000 years ago, people began colonizing this part of the world. Some settled briefly in places on the lower terraces next to the river. As water continued to flow into the oceans from the melting ice sheets, sea levels rose. The edge of the ocean gradually crept up the valleys of rivers like the Potomac, forming what we now know as the Chesapeake Bay. Eventually the waters reached the Anacostia, probably sometime around 4,000 years ago. The river slowed and widened. Water levels rose to cover some of the lower terraces and the remains of early site occupations on them. Later, people settled on higher terrace remnants that were now close to the edges of the widening stream. It is the remains of some of these settlements that were studied in the Barney Circle investigations.

The Anacostia Estuary

Areas where freshwater streams meet salt water from the seas are called estuaries. These areas receive freshwater from rivers along with minerals from eroding soils. Salty or brackish water from the sea mixes with the freshwater in the ebb and flow of tides. The combined waters of an estuary are rich in nutrients, creating highly productive natural habitats. Grasses, reeds, and other wetland plants grow on the marshy shores. Fish and shellfish are plentiful in the shallow, slow moving water. Water fowl frequent the marshes and quiet waters.
For several thousand years both the Potomac River and Anacostia River have been estuaries within the District of Columbia. The wide variety of natural resources they supported attracted Native Americans to their shorelines for much of that time. People first began to settle in the Anacostia Valley about 12,000 years ago. Relic collectors in the 19th century found artifacts of that age in farm fields on the west bank of the river. These artifacts are now housed in the collections of the Smithsonian Institution. The earliest evidence from the four Barney Circle sites is not quite so old—a single spear point from an era known as the Early Archaic, dating from 8000 BC to 6500 BC. More evidence from the sites dates to later time periods, known as Middle Archaic, Late Archaic and Woodland.

How Old Is It?

This is a question that archaeologists often hear and often ask themselves. How old is a site? How old is an artifact? How do we know? The answer is not always straightforward.

Archaeologists divide the past into blocks of time, referring to them with names like Archaic and Woodland. The names are more than just a convenience—the periods of time they represent have distinctive characteristics, such as particular types of artifacts that were made and used, or specific sizes or locations of sites.

But how do we know how old a site is? Archaeologists use several ways to determine age, some of which are fairly precise. Others are relative—a site may be described as being older than another. Ages may also be expressed as a range of time.
One of the most widely used and well-known techniques for dating archaeological sites is radiocarbon analysis. All living things absorb carbon from the environment at a generally consistent rate. At death, carbon is no longer absorbed and it begins to deteriorate radioactively at a steady and measurable pace. In effect, the amount of deteriorated carbon in a once-living substance is roughly equivalent to the amount of time since it died. From this we can deduce the age of the material and thus of other things found along with it.

Different techniques are being developed that measure other characteristics at the atomic level. Luminescence dating, for example, measures the amount of certain light emanations from soil or items made from soil such as ceramic pots. Many of these techniques are still somewhat experimental, though, and their results are not always universally accepted.

Radiocarbon Dating and Stratigraphic Layers

While new laboratory techniques are being developed, the most widely used is still radiocarbon dating. It is extremely useful, but it has the disadvantage that it can only be used on organic material—things that were once alive. It cannot, for example, be used directly on the stone artifacts that are so often found at archaeological sites in the region. A different form of dating, called relative dating, becomes necessary in these cases. The process involves, in part, the close examination of stratigraphy, or the layering of the soils and cultural deposits that make up an
archaeological site. A direct physical relationship must be shown between organic material that is radiocarbon dated and inorganic artifacts in the same stratigraphic layer.

As soil accumulates, it tends to bury materials that were once on the surface of the ground. In general, the deeper the soils, the longer the materials have been buried and thus the older they are—“the deeper you go, the older it gets.” A layer cake is an analogy that is often used—the lower layers of the cake are assumed to be older than the upper layers.

Things are not usually this simple in the natural world, though. There is much that can disrupt the layering effect. Soil may not accumulate at a consistent rate, for example, and soil may actually be lost through erosion. Plant roots and animals can burrow through the strata and mix them, essentially destroying the original layering. A lot of this activity occurs very slowly and is difficult to detect after it has happened. For this reason, archaeologists excavate carefully to locate and preserve any evidence of the original separation between older and younger deposits.

We use a variety of techniques to analyze the strata that we excavate. We look in detail at the soil particles and artifacts in the lab, for example. Chemicals in the soil can tell us about what the environment was like as the soil accumulated—whether it was wooded, open, dry, or wet. The sizes of the soil particles and artifacts may also be important. When soil is mixed by growing roots or animal burrows, it is as if it were shaken very slowly. Like a box of cereal that has been shaken, the smallest
pieces may settle towards the bottom while the larger pieces may tend to move up toward the top. Thus, we look closely at the sizes of sediment particles and artifacts to see if there is evidence of consistent sorting that might imply that the soil has been mixed and that the original layering has been disrupted.

Artifact Styles

Another way of dating an archaeological site is by the artifacts it contains. The most commonly occurring artifacts on prehistoric Native American sites are made from stone or ceramic. While most of these materials cannot be dated directly, the styles of the artifacts sometimes can. Certain artifacts, such as stone spear points or arrowheads and ceramic pots, were usually made in specific shapes or styles during different time periods. Archaeologists have debated over the years about what the styles represent. Were the shapes merely functional, was an artifact made a particular way to do a particular job? Or were styles used to signal group identity such as membership in a particular tribe?

While researchers may never fully agree on the reasons behind artifact styles, they do acknowledge that certain styles lasted for long periods of time and reached across broad geographic areas. Throughout much of Virginia and the District of Columbia, for example, we find spear points with long, finely made, narrow blades and straight stems. These are the Holmes points noted at 51SE25, named in honor of William Henry Holmes, an early researcher from the Bureau of American Ethnography, the predecessor of the Smithsonian Institution. Holmes points have
been found at archaeological sites across the region in soil layers that also contain charcoal that has been radiocarbon dated between 2200 BC and 1500 BC. From this we conclude that Holmes points were made and used during that 700-year span of time. Holmes points occurred at each of the Barney Circle sites, and even though we do not have reliable radiocarbon dates at some of the sites, we can conclude that people lived at the sites some time during the period in which Holmes points were made, between 2200 BC and 1500 BC.

Similarly, a type of pottery known as Mockley is commonly found throughout the region. The pottery is named after Mockley Point, the point of land in Maryland, south of Washington, D.C., where the artifacts were first discovered in the 1960s. Prehistoric potters used a distinctive mixture of clay and small pieces of crushed shell to make Mockley pots. They also covered the outside surfaces of the pots with impressions of nets or of sticks or paddles that were wrapped with cords. Archaeologists have found Mockley pottery at a number of sites along with charcoal that is radiocarbon dated between AD 200 and AD 900. The pottery was common at the Barney Circle sites, and indicates that people lived at the sites during that period of time.

Every site at which we find associations between artifact types or between artifacts and dated carbon adds to the information we have about prehistory. In many cases the information is not new. For example, a type of spear point known as Selby Bay is commonly found with Mockley pottery at sites in the region surrounding the District of Columbia. The two artifact types were found together at
the Barney Circle sites, which helps us date the sites and reinforces the relationship between the artifacts.

Bird’s-Eye View

One method we have of better understanding the Barney Circle archaeological sites is through visualization techniques. Using the power of modern computers, we have developed 3-dimensional or bird’s-eye views of the Anacostia Valley and the place of the sites within the landscape. We start with a map of modern elevations and remove sections of the river’s shoreline that have been filled in during the 20th century in land reclamation projects. The resulting map is a closer depiction of the valley as it would have appeared to people who lived there prior to European settlement.

The image is not intended to recreate the prehistoric landscape, but rather to help emphasize the importance of the physical locations of the sites by giving us an immediate impression of the settings and views. The results of the study show that people may have chosen these locations not only for the natural resources that were available nearby—water, marsh plants, or fish—but also for their strategic locations at a wide bend in the river.

Each location had a relatively clear line of sight along the stream in both directions, upriver and down. The terraces along the Anacostia River would have been heavily forested, and thus views such as these along the stream provided clear, long-distance perspectives in an otherwise closed terrain. The sites would
have held commanding positions either for trade or defense.

The sites may also have had a deeper, spiritual meaning. In Native American worldviews, rivers were often thought of in symbolic terms. They signified both the flow of life and corridors between the worlds of life and death. A river could be an open pathway for the dead or a gateway to the spiritual world. The riverside sites at Barney Circle may have represented unobstructed openings to the spiritual realm.

Such views are obviously not part of our current perception of the landscape. Yet for us today, rivers still symbolize the transition from one place to another. We often use the analogy of a stream when speaking of traffic—traffic flows, it is sluggish or runs smoothly. But the connection we make is on a much more commonplace or mundane level than was made by the earlier inhabitants of the region.

Barney Circle in Perspective

The Barney Circle Freeway Modification Project was a continuation of the long-time use of the Anacostia Valley as a transportation corridor. Investigation of the archaeological sites in the proposed right-of-way has expanded our knowledge of the area’s importance for transportation from early recorded history through the several thousand years that people lived in the region prior to the arrival of Europeans in the 1600s. Careful excavation and analysis of the artifacts and other data recovered from the four sites in the study has provided views into the lives of people who lived along the river hundreds and
even thousands of years ago. Today, as in the past, people rely on the river corridor to move themselves and their goods throughout the region.

Public opposition to the project and budgetary constraints resulted in the eventual cancellation of the Barney Circle Freeway Modification project. Destruction of the archaeological sites within the right-of-way that would have resulted from the proposed construction did not occur. Nevertheless, in keeping with the terms of an agreement between the Federal Highway Administration, the District of Columbia, and several historic preservation agencies, the results of the field studies were analyzed and reported in detail.

The archaeological sites were not completely excavated, however—large parts were left untouched. This is often the case in investigations of this sort due to the time and expense required to fully excavate the sites. In addition, it is common practice to leave a portion of a site intact for future research that may have the advantage of enhanced investigative techniques.

The Barney Circle archaeological studies demonstrated the survival of substantial portions of the prehistoric landscape in modern urban environments. It is important to continue looking carefully at proposed development impacts in similar areas as we work to expand our knowledge of the past.